Discipline :MECHANICALENGG	Semester :3 rd	Name of the Teaching Faculty: BHABANI SANKAR SAHOO
Subject:THERMAL	No. of	Semester From date: 01.10.2021 To Date:08.01.2022
ENGINEERING-I(TH4)	days/per week class allotted: 04	No. of Weeks:15
Week	Class Day	Theory / Practical Topics
1 st	1^{st}	 Thermodynamic concept & Terminology Thermodynamic Systems (closed, open, isolated)
	2 nd	1.2 Thermodynamic properties of a system pressure, volume, temperature, entropy, enthalpy,
	3 rd	Internal energy and units of measurement
	4 th	1.3 Intensive and extensive properties
2 nd	1^{st}	1.4 Define thermodynamic processes, path, cycle,
	2 nd	state, path function, point function
	3 rd	1.5 Thermodynamic Equilibrium.
	4 th	1.6 Quasi-static Process.
3 rd	1 st	1.7 Conceptual explanation of energy and its sources
	2 nd	1.8 Work , heat and comparison between the two
	3 rd	1.9 Mechanical Equivalent of Heat.
	4 th	1.10 Work transfer, Displacement work
4 th	1 st	2. Laws of Thermodynamics
	1	2.1 State & explain Zeroth law of thermodynamics.
	2 nd	2.2 State & explain First law of thermodynamics.
	3 rd	2.2 State & explain First law of thermodynamics. Limitations of
		First law of thermodynamics
	4 th	2.3 Limitations of First law of thermodynamics
5 th	1 st	2.4Application of First law of Thermodynamics (steady flow energy
		equation and its application to turbine)
	2 nd	2.4Application of First law of Thermodynamics (steady flow energy
		equation and its application to compressor)
	3 rd	2.5 Second law of thermodynamics (Claucius& Kelvin Plank
		statements).
	4 th	2.5 Second law of thermodynamics (Claucius& Kelvin Plank statements).
6 th	1^{st}	2.6 Application of second law in heat engine, heat pump, refrigerator
	2 nd	Determination of efficiencies & C.O.P
	3 rd	Solve simple numerical
	4 th	Solve simple numerical
$7^{ ext{th}}$	1 st	3. Properties Processes of perfect gas
	*	3.Laws of perfect gas:
		Boyle's law, Charle's law, Avogadro's law, Dalton's law of
		partial pressure, Guy lussac law.
	2 nd	General gas equation, characteristic gas constant, Universal
		gas constant.

	3 rd	Solve simple numerical
	4 th	3.3 Explain specific heat of gas (Cp and Cv), Relation between
4	_ st	Cp&Cv
8 th	1	3.4Enthalpy of a gas.
	2 nd	3.5Work done during a non- flow process.
	3 rd	3.6Application of first law of thermodynamics to various non
		flow process (Isothermal, Isobaric, Isentropic and polytrophic
	4 th	process) Solve simple problems on above.
9 th	1 st	Solve simple problems on above.
	2^{nd}	3.7 Free expansion & throttling process
	3 rd	4. Internal combustion engine 4.1Explain & classify I.C engine.
	4 th	4.2Terminology of I.C Engine such as bore, dead centers, stroke
		volume, piston speed &RPM.
10 th	1 st	4.3Explain the working principle of 2-stroke S.I engine
	2^{nd}	4.3Explain the working principle of 2-stroke C.I engine
	3 rd	4.3Explain the working principle of 4- stroke engine S.I engine
	4 th	4.3Explain the working principle 4- stroke engine C.I engine
11 th	1 st	4.4 Differentiate between 2-stroke & 4- stroke engine
	2 nd	4.4 Differentiate between C.I& S.Iengine
	3 rd	5. Gas Power Cycle
	Ath	5.1 Carnot cycle
- th	4 th	Solve simple numerical
12 th	1^{st}	5.2 Otto cycle
	2^{nd}	Solve simple numerical
	3 rd	5.3 Diesel cycle.
	4 th	Solve simple numerical
13 th	1^{st}	5.4 Dual cycle
	2 nd	5.5 Solve simple numerical
	3 rd	5.5 Solve simple numerical
	4 th	5.5 Solve simple numerical
14 th	1 st	6. Fuels and Combustion 6.1Define Fuel.
	$\frac{1}{2^{nd}}$	
	-	6.2 Types of fuel.
	3 rd	6.3 Application of different types of fuel.
	4 th	6.3 Application of different types of fuel.
15 th	1 st	6.4 Heating values of fuel.
	2 nd	6.5 Quality of I.C engine fuels Octane number, Cetane number.
	3 rd	6.5 Quality of I.C engine fuels Octane number, Cetane number.
	4 th	6.5 Quality of I.C engine fuels Octane number, Cetane number.

- Learning Resouces: 01. Thermal Engineering, by R.S.Khurmi, S.Chand
 - 02. Thermal Engineering by A.R.Basu, DhanpatRai
 - 03. Thermal Engineering, by A.S.Sarao, SatyaPrakash
 - 04. Engineering Thermodynamics, by P.K.Nag, TMH
 - 05. Thermal Engineeringby Mahesh MRathore, TMH